1,问题描述
56. 合并区间
难度:中等
以数组 intervals
表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi]
。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。
示例 1:
1 2 3
| 输入:intervals = [[1,3],[2,6],[8,10],[15,18]] 输出:[[1,6],[8,10],[15,18]] 解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
|
示例 2:
1 2 3
| 输入:intervals = [[1,4],[4,5]] 输出:[[1,5]] 解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
|
提示:
1 <= intervals.length <= 10^4
intervals[i].length == 2
0 <= starti <= endi <= 10^4
2,初步思考
解法 1:线段树
使用 dp 缓存数据,去判断每个终点减起点的数据是否一致,如果是的那么说明已经被合并,否则就是还没有被合并
解法 2:区间合并
先利用有限队列排序,然后在依次进行比较合并区间,无法合并的区间就直接输出
3,代码处理
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
| import java.util.ArrayList; import java.util.List; import java.util.PriorityQueue;
public class _56合并区间 {
public int[][] merge_slip_gov(int[][] intervals) { PriorityQueue<int[]> queue = new PriorityQueue<>((o1, o2) -> o1[0] - o2[0]); for (int i = 0; i < intervals.length; i++) { queue.offer(intervals[i]); }
List<int[]> temp = new ArrayList<>(); int[] poll = queue.peek(); int start = poll[0]; int end = poll[1]; while (!queue.isEmpty()) { poll = queue.poll(); int startCur = poll[0]; int endCur = poll[1]; if (startCur <= end) { end = Math.max(end, endCur); } else { int[] tempChild = new int[2]; tempChild[0] = start; tempChild[1] = end; temp.add(tempChild); start = startCur; end = endCur; } } int[] tempChild = new int[2]; tempChild[0] = start; tempChild[1] = end; temp.add(tempChild);
int[][] res = new int[temp.size()][2]; for (int i = 0; i < temp.size(); i++) { res[i] = temp.get(i); } return res; }
public int[][] merge_tree(int[][] intervals) { int[] dp = new int[10002]; PriorityQueue<int[]> queue = new PriorityQueue<>((o1, o2) -> o1[0] - o2[0]); for (int i = 0; i < intervals.length; i++) { queue.offer(intervals[i]); }
while (!queue.isEmpty()) { int[] interval = queue.poll(); int start = interval[0]; int end = interval[1]; if (start == end) { if (dp[start] != 0) continue; dp[start] = 1; } if (dp[end] - dp[start] == end - start) continue;
int startCnt = dp[start]; startCnt = startCnt == 0 ? 1 : startCnt; for (int j = start; j <= end; j++) { dp[j] = j - start + startCnt; } }
List<int[]> temp = new ArrayList<>(); for (int i = 1; i < dp.length; i++) { if (dp[i - 1] > 0 && dp[i] <= dp[i - 1]) { int[] tempChild = new int[2]; tempChild[1] = i - 1; tempChild[0] = tempChild[1] - dp[i - 1] + 1; temp.add(tempChild); } } int[][] res = new int[temp.size()][2]; for (int i = 0; i < temp.size(); i++) { res[i] = temp.get(i); } return res; }
public static void main(String[] args) { _56合并区间 merge = new _56合并区间(); int[][] ints;
ints = merge.merge_tree(new int[][]{{1, 3}, {8, 10000}, {3, 8}});
for (int i = 0; i < ints.length; i++) { System.out.print("[" + ints[i][0] + "," + ints[i][1] + "],"); } } }
|