56. 合并区间 (中等)

1,问题描述

56. 合并区间

难度:中等

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间

示例 1:

1
2
3
输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例 2:

1
2
3
输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。

提示:

  • 1 <= intervals.length <= 10^4
  • intervals[i].length == 2
  • 0 <= starti <= endi <= 10^4

2,初步思考

​ 解法 1:线段树

​ 使用 dp 缓存数据,去判断每个终点减起点的数据是否一致,如果是的那么说明已经被合并,否则就是还没有被合并

​ 解法 2:区间合并

​ 先利用有限队列排序,然后在依次进行比较合并区间,无法合并的区间就直接输出

3,代码处理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import java.util.ArrayList;
import java.util.List;
import java.util.PriorityQueue;

public class _56合并区间 {

// 解法:排序+双指针
public int[][] merge_slip_gov(int[][] intervals) {
PriorityQueue<int[]> queue = new PriorityQueue<>((o1, o2) -> o1[0] - o2[0]);
for (int i = 0; i < intervals.length; i++) {
queue.offer(intervals[i]);
}

List<int[]> temp = new ArrayList<>();
int[] poll = queue.peek();
int start = poll[0];
int end = poll[1];
while (!queue.isEmpty()) {
poll = queue.poll();
int startCur = poll[0];
int endCur = poll[1];
if (startCur <= end) {// 存在重叠区间
end = Math.max(end, endCur);
} else {// 不存在重叠区间
int[] tempChild = new int[2];
tempChild[0] = start;
tempChild[1] = end;
temp.add(tempChild);
start = startCur;
end = endCur;
}
}
int[] tempChild = new int[2];
tempChild[0] = start;
tempChild[1] = end;
temp.add(tempChild);

int[][] res = new int[temp.size()][2];
for (int i = 0; i < temp.size(); i++) {
res[i] = temp.get(i);
}
return res;
}


// 解法:线段树
public int[][] merge_tree(int[][] intervals) {
int[] dp = new int[10002];
PriorityQueue<int[]> queue = new PriorityQueue<>((o1, o2) -> o1[0] - o2[0]);
for (int i = 0; i < intervals.length; i++) {
queue.offer(intervals[i]);
}

while (!queue.isEmpty()) {
int[] interval = queue.poll();
int start = interval[0];// 起始点【闭区间】
int end = interval[1];// 结束点【闭区间】
if (start == end) {
if (dp[start] != 0) continue;
dp[start] = 1;
}
if (dp[end] - dp[start] == end - start) continue;// 已经被包含了

int startCnt = dp[start];
startCnt = startCnt == 0 ? 1 : startCnt;
for (int j = start; j <= end; j++) {
dp[j] = j - start + startCnt;
}
}

List<int[]> temp = new ArrayList<>();
for (int i = 1; i < dp.length; i++) {
if (dp[i - 1] > 0 && dp[i] <= dp[i - 1]) {
int[] tempChild = new int[2];
tempChild[1] = i - 1;// 索引
tempChild[0] = tempChild[1] - dp[i - 1] + 1;// 索引-长度
temp.add(tempChild);
}
}
int[][] res = new int[temp.size()][2];
for (int i = 0; i < temp.size(); i++) {
res[i] = temp.get(i);
}
return res;
}

public static void main(String[] args) {
_56合并区间 merge = new _56合并区间();
int[][] ints;
// ints = merge.merge_tree(new int[][]{{1, 3}, {2, 6}, {8, 10}, {15, 18}});
// ints = merge.merge_tree(new int[][]{{1, 4}, {4, 5}});
// ints = merge.merge_tree(new int[][]{{1, 4}, {5, 6}});
// ints = merge.merge_tree(new int[][]{{1, 4}, {0, 0}});
ints = merge.merge_tree(new int[][]{{1, 3}, {8, 10000}, {3, 8}});


for (int i = 0; i < ints.length; i++) {
System.out.print("[" + ints[i][0] + "," + ints[i][1] + "],");
}
}
}