1,问题描述
LCR 103. 零钱兑换
难度:中等
给定不同面额的硬币 coins
和一个总金额 amount
。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的。
示例 1:
1 2 3
| 输入:coins = [1, 2, 5], amount = 11 输出:3 解释:11 = 5 + 5 + 1
|
示例 2:
1 2
| 输入:coins = [2], amount = 3 输出:-1
|
示例 3:
1 2
| 输入:coins = [1], amount = 0 输出:0
|
示例 4:
1 2
| 输入:coins = [1], amount = 1 输出:1
|
示例 5:
1 2
| 输入:coins = [1], amount = 2 输出:2
|
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
注意:本题与主站 322 题相同: https://leetcode-cn.com/problems/coin-change/
2,初步思考
动态规划、完全背包问题
模式识别:子问题,可以使用自上而下的递归、自下而上的动态规划
3,代码处理
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
| import java.util.Arrays; import java.util.HashMap; import java.util.Map;
public class _LCR103零钱兑换 {
Map<Integer, Integer> map = new HashMap<>();
public int coinChange_recursion(int[] coins, int amount) { if (amount < 1) return 0; if (map.containsKey(amount)) { return map.get(amount); } int min = amount + 1; for (int coin : coins) { if (coin > amount) { continue; } else if (coin == amount) { map.put(amount, 1); return 1; } else { int cnt = coinChange_recursion(coins, amount - coin); if (cnt != -1) min = Math.min(min, cnt + 1); } } map.put(amount, min == amount + 1 ? -1 : min); return map.get(amount); }
public int coinChange(int[] coins, int amount) { int[][] dp = new int[coins.length + 1][amount + 1]; Arrays.fill(dp[0], amount + 1); for (int i = 1; i <= coins.length; i++) { for (int j = 1; j <= amount; j++) { int coin = coins[i - 1]; dp[i][j] = dp[i - 1][j]; if (j >= coin && dp[i][j - coin] != amount + 1) { dp[i][j] = Math.min(dp[i][j - coin] + 1, dp[i][j]); } } } return dp[coins.length][amount] == amount + 1 ? -1 : dp[coins.length][amount]; }
public int coinChange_1d(int[] coins, int amount) { int[] dp = new int[amount + 1]; Arrays.fill(dp, amount + 1); dp[0] = 0; for (int i = 1; i <= coins.length; i++) { for (int j = 1; j <= amount; j++) { int coin = coins[i - 1]; if (j >= coin && dp[j - coin] != amount + 1) { dp[j] = Math.min(dp[j - coin] + 1, dp[j]); } } } return dp[amount] == amount + 1 ? -1 : dp[amount]; }
public static void main(String[] args) { _LCR103零钱兑换 test = new _LCR103零钱兑换();
System.out.println(test.coinChange_recursion(new int[]{2}, 4));
} }
|