1,问题描述
48. 旋转图像
难度:中等
给定一个 n × n 的二维矩阵 matrix
表示一个图像。请你将图像顺时针旋转 90 度。
你必须在** 原地** 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:

1 2
| 输入:matrix = [[1,2,3],[4,5,6],[7,8,9]] 输出:[[7,4,1],[8,5,2],[9,6,3]]
|
示例 2:

1 2
| 输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] 输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
|
提示:
n == matrix.length == matrix[i].length
1 <= n <= 20
-1000 <= matrix[i][j] <= 1000
2,初步思考
模拟法:直接先找出数学规律
(i,j)——》(len-j-1,i)
(len-j-1,i)——》(len-i-1,len-j-1)
(len-i-1,len-j-1)——》(j,len-i-1)
(j,len-i-1)——》(len-i-1,j)
翻转变换法:先水平翻转、再沿着左上对角线翻转!
3,代码处理
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
| public class _48旋转图像 {
public void rotate_flip(int[][] matrix) { int len = matrix.length; for (int i = 0; i < len / 2; ++i) { for (int j = 0; j < len; ++j) { int temp = matrix[i][j]; matrix[i][j] = matrix[len - i - 1][j]; matrix[len - i - 1][j] = temp; } }
for (int i = 0; i < len; ++i) { for (int j = 0; j < i; ++j) { int temp = matrix[i][j]; matrix[i][j] = matrix[j][i]; matrix[j][i] = temp; } } }
public void rotate(int[][] matrix) { int len = matrix.length; for (int i = 0; i < len / 2; i++) { for (int j = 0; j < (len + 1) / 2; j++) { int temp = matrix[i][j]; matrix[i][j] = matrix[len - 1 - j][i]; matrix[len - 1 - j][i] = matrix[len - 1 - i][len - 1 - j]; matrix[len - 1 - i][len - 1 - j] = matrix[j][len - 1 - i]; matrix[j][len - 1 - i] = temp; } } }
public void rotate_area(int[][] matrix) { int len = matrix.length; int[][] ans = new int[len][len]; for (int i = 0; i < len; i++) { for (int j = 0; j < len; j++) { ans[j][len - i - 1] = matrix[i][j]; } }
for (int i = 0; i < len; i++) { for (int j = 0; j < len; j++) { matrix[i][j] = ans[i][j]; } } }
public static void main(String[] args) { _48旋转图像 rotate = new _48旋转图像(); int[][] matrix = new int[][]{ {1, 2, 3}, {4, 5, 6}, {7, 8, 9} }; rotate.rotate(matrix); for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[0].length; j++) { System.out.print(matrix[i][j] + " "); } System.out.println(); } }
}
|